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Motion of Kink in Hydrogen-Bonded Chain with
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We discuss the nonlinear excitations and the motion of kink in hydrogen-bonded chain
with asymmetric double-well potential, in presence of an external force and damping
using a new two-component soliton model. We obtain the kink soliton solution using the
phase-plane method, we study soliton velocity and find the expression of the mobility
of the kink soliton.
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1. INTRODUCTION

The hydrogen bridge exists in many solid state systems and biological molec-
ular chains. It has two types, namely symmetric, X–H· · ·X, asymmetric, X–H· · ·Y,
where –indicates a covalent bond, and · · · indicates a hydrogen bond. For example,
the hydrogen bridge in an ice crystal is symmetric, in which proton exists in a
symmetric potential with double minima. The conduction mechanism of a soliton
have been investigated by a number of author in hydrogen-bonded chain with
symmetric double-well potential (Cheng, 2000; Pang and Muller-Kirsten, 2000;
Xu, 1992). However, for α-helical proteins and an acctanilide crystal, the hydro-
gen bridge is asymmetric, in which protons exist in an asymmetric potential with
double minima (Xu, 1995). The bell-shape soliton model for proton transport in a
hydrogen-bonded chain with an asymmetric double-well potential was suggested
by Gordon (1988). The motion of a bell shape soliton pair in a hydrogen-bonded
chain with an asymmetric double-well potential has been investigated by Xu and
Huang (1995). In this paper, we investigate the nonlinear excitation in a hydrogen-
bonded chain with an asymmetric double-well potential, in the presence of an
external force and damping, based on the a new two-component soliton model. In
Section 2, we present the Hamiltonian of the system and derive the equations of
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motion. In Section 3, we give the kink soliton solution. In Section 4, we investigate
soliton velocity and get the expression for the mobility of the kink soliton.

2. MODEL AND THE HAMILTONIAN OF THE SYSTEM

We can consider that the hydrogen-bonded chain is composed of pro-
ton sublattice and a heavy ion sublattice. For example, the acctanilide chain
(CH3CONHC6H5)x is composed of a proton sublattice (H+)x and heavy ion sub-
lattice (CH3CONC6H5

+)x . We take a new two-component model in a hydrogen-
bonded chain with asymmetric double-well potential and assume that the coupling
between the proton sublattice and the heavy ion sublattice is a linear interaction
(Xu and Huang, 1995). The Hamiltonian of the system may be written as a sum
of three terms

H = Hp + Hh + Hint (1)

where

Hp =
∑

i
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∑
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Hint =
∑

i

mχ(ρi+1 − ρi)(ui+1 − ui) (5)

where Hp is the Hamiltonian of the proton sublattice, m the mass of the proton,
ui and Pi = mu̇i are the proton displacements and momenta respectively, the
quantity 1

2mω2
1uiui+1 shows the correlation interaction between neighbouring

protons caused by the dipole–dipole interactions, ω0 and ω1 are diagonal and
non-diagonal elements of the dynamical matrix of the proton respectively (Cheng,
2002). V (ui) is an asymmetric potential with double minima. A, B and C are
positive (Gordon, 1988). Hh is the Hamiltonian of the heavy ionic sublattice
with low-frequency harmonic vibration, M the mass of the heavy ion, ρi and
pi = Mρ̇i are the displacement of the heavy ion from its equilibrium position and
its conjugate momentum respectively, c0 = l(β/M)1/2 is the velocity of sound
in the heavy ionic sublattice, and l the lattice constant. Hint is the interaction
Hamiltonian between the protonic and the heavy ionic sublattices, χ is the coupling
constant between the two sublattices (Xu, 1996). In the continuum approximation
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with the long-wavelength limit (Pang and Muller-Kirsten, 2000), this Hamiltonian
can be replaced by a continuum representation

H =
∫ ∞
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dx

l

{[
1

2
mu2

t + 1

2
mω2

0u
2 − 1

2
mω2

1u

(
u + lux + 1

2
l2uxx

)

+
(

1

2
Au2 − 1

3
Bu3 + 1

4
Cu4

)
+

(
1

2
Mρ2

t + 1

2
βl2ρ2

x

)
+mχl2ρxux

]}
(6)

The Euler–Lagrange equations of motion corresponding to Eq. (6) are

m
(
utt − υ2

1uxx

) − mχl2ρxx + αu − Bu2 + Cu3 = 0 (7)

M
(
ρtt − c2

0ρxx

) − mχl2uxx = 0 (8)

where

α = A + m
(
ω2

0 − ω2
1

)
, υ2

1 = 1

4
l2ω2

1 (9)

υ1 is the characteristic velocity of the proton.

3. THE EQUATIONS OF MOTION AND THEIR SOLITON SOLUTION

In the presence of external force and damping, because of the fact that respond
of the heavy ions to the force and damping are very much less than for the protons,
the force and damping terms are only introduced in the equation of motion for the
protons (Peyrard et al., 1987). The equations of motion (7) and (8) are replaced
by the following equations

m
(
utt − υ2

1uxx

) − mχl2ρxx + m�ut + dV ′(u)

du
= 0 (10)

M
(
ρtt − c2

0ρxx

) − mχl2uxx = 0 (11)

where � is the damping coefficient for the proton. In the external electric field E

each proton has an additional potential energy −eEu:

V ′(u) = 1

2
αu2 − 1

3
Bu3 + 1

4
Cu4 − eEu (12)

here e is the protonic charge.
Using the variable transformation ξ = x − υt , u = u(ξ ), ρ = bu(ξ ),

Eqs. (10) and (11) become

[
m

(
υ2

1 − υ2
) + mχl2b

]
uξξ + m�υuξ − dV ′(u)

du
= 0 (13)

b = − mχl2

M
(
c2

0 − υ2
) (14)
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Using the phase-plane method (Gordon, 1987), we shall obtain soliton solu-
tion. For this reason, we introduce the following notation

du

dξ
= y (15)

Equation (13) can be written as[
m
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) + mχl2b

]
yξ + m�υy − C(u − u1)(u − u2)(u − u3) = 0 (16)

where
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θ = arccos
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(1 − 9αC/2B2 + 27C2eE/2B3)

(1 − 3αC/B2)3/2

]
(20)

here u1, u2 and u3 are the roots of the equation dV ′(u)/du = 0u1, u2 correspond
to minima of the potential V ′(u), u3 corresponds to the top of potential barrier of
the double-minimum potential.

Therefore, soliton solution which we seek corresponds to a trajectory in the
(u, y) phase plane of the system of Eqs. (15) and (16). From (15) and (16) we
obtain a differential equation for solution trajectory as

[
m

(
υ2

1 − υ2
) + mχl2b

]
y

dy

du
+ m�υy − C(u − u1)(u − u2)(u − u3) = 0 (21)

Equation (21) can be satisfied by a trajectory of the form

y = D(u − u1)(u − u2) (22)

The substituting Eq. (22) into (21), we have

D =
√

C√
2
[
m

(
υ2
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] (23)

Inserting Eq. (22) into (15) and integrating (15), we obtain kink soliton
solution

u = u1 + u2

2
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2
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where Wk is the width of the soliton

Wk =
√

2
[
m

(
υ2

1 − υ2
) + mχl2b

]
√

C(u1 − u2)
(25)

Solution (24) is a topological excitation being a kink soliton. Because the
charge density depends directly on δe = −∂u/∂x (Xu and Huang, 1995). Equation
(24) show that the motion of this kink describes the propagation of the charge along
the hydrogen-bonded chain and realize the mobility of the kink soliton.

4. VELOCITY AND MOBILITY

The substitution of (22) into (21) gives kink soliton velocity along hydrogen-
bonded chain
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From (26) we obtain soliton velocity

υ =
[
1 + mχl2b/mυ2

1

]1/2
υ1[
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3
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In case the weak coupling and υ � c0, we have coupling factor mχl2b/mυ2
1 � 1,

Eq. (27) is written as
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[
1 + m�2C

2B2(1 − 3αC/B2) cos2 π+θ
3

]−1/2

(28)

Using the expansion
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From Eqs. (20), (28), (29) and (33) we get

υ|E=0 = υ1

[
1 + 2m�2C

B2

]−1/2

(34)

and the mobility of the kink soliton

µ = −6mC2V1e�
2

α(B2 + 2C�2m)3/2
(35)

Considering a symmetric double-well potential (Gordon, 1987)

V (u) = −1

2
Au2 + 1

4
Bu4 (36)

comparing Eqs. (36) and (12) and using α → −A, B = 0, E = 0, C → B,
Eq. (35) becomes

µ = 3V1e

A�

(
B

2m

)1/2

(37)

Equation (36) is the mobility of kink soliton with symmetric double-well
potential in hydrogen-bonded chain. This result agrees with that given by Gordon
(1987).

5. CONCLUSIONS

In conclusion, we have studied the nonlinear excitations and the motion
of a kink soliton in hydrogen-bonded chains with an asymmetric double-well
potential, in presence of an external force and damping using a new two-component
soliton model. Solution (24) is a topological excitation being a kink soliton. It
describes the propagation of the charge along the hydrogen-bonded chains. We also
investigate soliton velocity and obtain the expression for the mobility of the kink
soliton.
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